Summer School Shanghai Observatory

趙丰 Benjamin Fong Chao Institute of Earth Sciences Academia Sinica, Taipei, Taiwan

Outline

- Linear expansion
 - Vector space
 - Fourier analysis
 - Spherical harmonics
 - EOF/PCA
- Normal modes
 - of musical instruments
 - of Earth
- Inverse problems
- Earth's rotation
 - "Astronomical"
 - "Geophysical"
- Gravity and Geomagnetism

Vector space

- Dimensionality
- Addition
- Null vector
- Scaling / multiplication
- Unit vector
- Inner product
- norm
- Basis
- Projection / component

Tensor of degree *n*

- Scalar (*n* = 0)
- Vector (*n* = 1)
- Tensor of *n* = 2; (matrix)
 - stress
 - strain
- Tensor of *n* = 4:
 - elasticity / compliance

$$\sigma_{ij} = c_{ijk\ell} \ \epsilon_{k\ell}$$

Hilbert space

- "Function space"
- Infinite dimension
- domain
- Inner product
- Orthogonality
- Basis function
- Completeness

Fourier analysis

- Basis function = sinusoids
- Cartesian coordinates of dimension *n*
- Orthogonal
- Complete

Spherical Harmonics

- Spherical coordinates
- Satisfying Laplace equation
- Solid harmonics (3-D)
- Surface harmonics (2-D)
- Legendre functions
- Orthogonal
- Complete

$$\begin{split} Y_{l}^{m}(\theta,\phi) &= \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos\theta) e^{im\phi} \\ \begin{cases} & Y_{00} = \frac{1}{(4\pi)^{\frac{1}{2}}} \\ & Y_{10} = \left(\frac{3}{4\pi}\right)^{\frac{1}{2}} \cos\left(\theta\right) \\ & Y_{1\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{\frac{1}{2}} \sin(\theta) e^{\pm i\phi} \\ & Y_{20} = \left(\frac{5}{16\pi}\right)^{\frac{1}{2}} (3\cos^{2}(\theta)-1) \\ & Y_{2\pm 1} = \mp \left(\frac{15}{8\pi}\right)^{\frac{1}{2}} \cos\left(\theta\right) \sin(\theta) e^{\pm i\phi} \\ & Y_{2\pm 2} = \left(\frac{15}{32\pi}\right)^{\frac{1}{2}} \sin^{2}(\theta) e^{\pm 2i\phi} \end{split}$$

$$\int_0^{2\pi} \int_0^{\pi} (Y_l^m)^* Y_{l'}^{m'} \sin\theta d\theta d\phi = \delta_{ll'} \delta_{mm'}$$

EOF (Empirical Orthogonal Function)

decomposing data matrix into "mode of standing-oscillations"

- presented by spatial pattern and temporal series.

% variance = eigen-value

Normal modes

- Musical instrument
 - Wave equation
 - Boundary condition
 - Propagating wave / normal mode duality
 - 1-D: string
 - 2-D: drum
 - 3-D:
- Earth

What is music?

Satisfying the wave equation (*n*-D) under boundary conditions:

Oscillation of the bell (\mathbf{r}, t)

 $= \Sigma$ (of all normal modes, \mathbb{M})

amplitude (depending on where, how hard you strike, etc., called "excitation".)

* normal-mode eigenfunction (**r**) (depending on the physical property of the bell, e.g, if symmetric, sinusoids in 1-D, Legendre or Bessel functions in 2-D, etc. Earth is 3-D = 2-D + 1-D.)

* $exp(i\omega t)$ (ω is the normal-mode eigenfrequency, or "natural" resonance frequency = music tones, with imaginary part = natural decay. Quantized because of boundary conditions.)

A typical seismogram

Travelling waves versus standing waves

Different classes of free oscillations

Spheroidal, Radial, and Toroidal

Earthquake Displacement Field

Equation of motion

$$\nabla \tau + \mathbf{f_g} + \mathbf{f_s} = \rho(\mathbf{r}) \frac{\partial^2 \mathbf{u}}{\partial t^2}$$

Solve by expanding displacement field

$$\mathbf{u}(\mathbf{r},t) = \sum_{k} a_{k}(t) \mathbf{u}_{k}^{*}(\mathbf{r})$$

Normal mode eigenfunctions

$$\mathbf{u}_{k}(\mathbf{r}) = {}_{n}U_{l}(r)Y_{l}^{m}(\theta,\phi)\,\hat{\mathbf{r}} + {}_{n}V_{l}(r)\frac{\partial Y_{l}^{m}}{\partial\theta}\,\hat{\mathbf{\theta}} + {}_{n}W_{l}(r)\frac{1}{\sin\theta}\frac{\partial Y_{l}^{m}}{\partial\lambda}\,\hat{\mathbf{\lambda}}$$

Expansion coefficients (note the static limit)

$$a_{k}(t) = \frac{M_{O}}{\omega_{k}^{2}} \,\hat{\mathbf{M}}: \mathbf{E}_{k}^{*}(\mathbf{r}_{\mathbf{S}})[\exp(i\omega_{k}t) + 1]$$

Co-Seismic Displacement Field

$\mathbf{u}(\mathbf{r}) = \text{oscillations} + \text{static displacement}$ $= 0 \text{ (as } \mathbf{t} \rightarrow \infty) + \sum_{k=0}^{\infty} \omega_k^{-2} \mathbf{u}_k(\mathbf{r}) \mathbf{M} : \mathbf{E}_k^*(\mathbf{r}_f)$ (Gilbert, 1970)

Eigen-mode ($\mathbf{u}_k(\mathbf{r})$, $\mathbf{E}_k(\mathbf{r}_f)$, ω_k , k = spheroidal and toroidal: from SNREI model (e.g., 1066A, B; PREM)

Moment tensor M: from Global CMT catalog

The Scripps gang Inverse theory / Normal mode

George Backus

Freeman Gilbert

Bobert Parker

Guy Masters

Sir Harald Jeffreys (1891-1989)

Gordon MacDonald (1929-2002)

Earth Rotation

Walter Munk

Kurt Lambeck

Tony Dahlen (1942-2007)

John Wahr

"The Earth precesses/nutates like a top."

"The Earth librates like a physical pendulum."

"The Earth wobbles like a frisbee."

"The Earth precesses/nutates like a top."

子曰:為政以德,譬如北辰,居其所,而眾星拱之。 《論語·為政》

"The Earth wobbles like a frisbee."

Tidal Braking: Slowing down Earth's rotation and pushing away the Moon

Figure 11.6. Middle Devonian coral epitheca from Michigan, U.S.A., illustrating 13 well-developed bands, each with an average of 30.8 ridges

Secular Braking of Earth's Rotation

Determination of dΩ/dt from Ancient Eclipses

Babylonian diary from the year 87 BC (@The British Museum).

$\Delta T = 11680 \pm 460$ seconds (3.2 hrs)

(Uncertainties are strict upper/lower bounds) (Assumes modern $dn/dt = -26^{\circ}/cy^2$)

Implies $d\Lambda/dt = 1.71 \pm 0.07$ ms/century A Babylonian day was ~37 ms shorter than ours.

A very precise estimate from one single eclipse!

Co-Seismic Effects on Earth's Rotation

- Milne (1906); Cecchini (1928)
- Munk & MacDonald (1960)
- Alaska earthquake (1964), Press (1965)
- Mansinha & Smylie (1967; +)
- Ben-Menahem & Israel (1970; +)
- Rice & Chinnery (1972)
- Dahlen (1973)
- Dziewonski & O'Connell (1975)
- Smith (1977)
- Souriau & Cazenave (1985)
- Gross (1986)
- Chao & Gross (1987; +)
 - using normal mode summation (Gilbert, 1970)
 - In terms of seismic moment tensor (Harvard CMT catalog)
 - need (SNREI) Earth model (PREM) and normal mode eigen-functions (Masters)
 - similar formulas for changes in gravity field, energy, etc.

Seismic Moment Tensor

- Contains all information about source mechanism (magnitude, fault direction, slip angles, etc.)
- 2nd-order tensor (conservation of linear momentum)
- Symmetric tensor, only 6 independent parameters (conservation of angular momentum)
- Magnitude (seismic moment) [M:M]^{1/2} is a good measure of earthquake size

```
=> moment scale (vs.
```

Richter scale)

Cumulative change in Length-of-Day by earthquakes since 1976

Year

Cumulative "Mean" Pole Position shift by earthquakes, 1976-1999

發生時間	地點	地震規模	日長改變量	自轉軸偏移量	自轉軸偏移方向
1957/3/9	阿拉斯加	9.1	(資料不足)	(資料不足)	(資料不足)
1960/5/22	智利	9.5	−8.4 μs	68 cm	115 °E
1964/3/27	阿拉斯加	9.2	+ 6.8 µs	23 cm	198 °E
2004/12/26	蘇門答臘	9.3	-6.8 µs	7 cm	127 °E
2010/2/27	智利	8.8	–1.3 µs	8 cm	112 °E
2011/3/11	日本	9.1	–1.6 µs	15 cm	139 °E

Year

Long-term changes in Earth's oblateness J_2

Limitation of (time-variable) gravity signal

"You don't know where it comes from!"

- Low spatial resolution
- Non-uniqueness in inversion
- Sum of all sources

Gravitational Potential Field

Newton's gravitational law

$$U(\mathbf{r}) = G \int \int_{V} \int \frac{\rho(\mathbf{r}_0)}{|\mathbf{r} - \mathbf{r}_0|} dV_0$$

• Addition theorem

$$1/|\mathbf{r}-\mathbf{r}_{0}| = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (2n+1)^{-1} (r_{0}^{n} / r^{n+1}) Y_{nm}^{*}(\Omega) Y_{nm}(\Omega_{0})$$

Gravitational Potential Field (Geoid)

• Multipole expansion of Newton's formula:

$$U(\mathbf{r}) = G \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{1}{(2n+1)r^{n+1}} \left[\iint_{V} \rho(\mathbf{r}_{0}) r_{0}^{n} Y_{nm}(\Omega_{0}) dV_{0} \right] Y_{nm}^{*}(\Omega)$$

 Conventional expression (satisfying Laplace Eq. in terms of Stokes Coeff.):

$$U(r,\theta,\lambda) = \frac{GM}{a} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n+1} P_{nm} \left(\cos\theta\right) \left(C_{nm} \cos m\lambda + S_{nm} \sin m\lambda\right)$$

$$\square C_{nm} + iS_{nm} = \frac{1}{(2n+1)Ma^n} \iint_{V} \rho(\mathbf{r}) r^n Y_{nm}(\Omega) dV$$

3-D Gravitational Inversion

• Multipole expansion

$$U(\mathbf{r}) = G \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{1}{(2n+1)r^{n+1}} \left[\iint_{V} \rho(\mathbf{r}_{0}) r_{0}^{n} Y_{nm}(\Omega_{0}) dV_{0} \right] Y_{nm}^{*}(\Omega)$$

2n + 1 (known) multipoles for each degree n

Moment expansion

$$U(\mathbf{r}) = G \sum_{n=0}^{\infty} \sum_{\alpha,\beta,\gamma\geq 0}^{\alpha+\beta+\gamma=n} \frac{(-1)^n}{\alpha!\,\beta!\gamma!} \left[\iint_{\mathcal{V}} x_0^{\alpha} \, y_0^{\beta} \, z_0^{\gamma} \, \rho(\mathbf{r}_0) \, dV_0 \right] \frac{\partial^n}{\partial x^{\alpha} \partial y^{\beta} \partial z^{\gamma}} \left(\frac{1}{|\mathbf{r}|} \right)$$

(n+1)(n+2)/2 (unknown) moments for each n

"Degree of deficiency" of knowledge is *n*(*n*-1)/2 for each degree *n*.

Degree n	# multipoles $(2n+1)$	# moments (<i>n</i> +1)(<i>n</i> +2)/2	Degree of deficiency n(n-1)/2
0	1 (monopole)	1 (total mass)	0
1	3 (dipole)	3 (center of mass)	0
2	5 (quadrupole)	6 (inertia tensor)	1
3	7 (octupole)	10 (3rd moment)	3
4	9	15	6
5	11	21	10
6	13	28	15
100	201	5151	4950

The degree of deficiency as a function of spherical harmonic degree *n* in the 3-D gravitational inversion.

<u>Additional physical/mathematical</u> <u>constraints leading to unique solutions:</u>

- minimum shear energy
- maximum entropy of ρ
- minimum norm-2 variance for the lateral distribution
- •

It is possible to mimic ANY external field by means of some proper surface density on S_0 .

2-D gravitational Inversion on a spherical shell S₀ (cont'd)

For CHANGES due to mass redistribution on S_0 (taking into account of loading effect), in Eulerian description:

$$\Delta C_{nm}(t) + i \Delta S_{nm}(t) = \frac{a^2(1+k'_n)}{(2n+1)M} \int \int \Delta \sigma(\Omega;t) Y_{nm}(\Omega) d\Omega$$

(near) Surface Mass Transports

- Earth ellipticity ~ $\frac{1}{2}$ of 1/300 *a* ~ 10 km
- Atmosphere scale height ~ 10 km
- Ocean < ~ 5 km
- Land hydrology < a few km
- Crustal/topography change < ~ 30 km

Nice things about spherical harmonics:

- Wavelength, or spatial resolution,
 - ~ 40,000/2N km \implies Concept of spectrum
- Altitude attenuation ~ r^{-n+1}
- Geoid: Stokes Coeff. (*C_{nm}*, *S_{nm}*)
- Gravity Disturbance: (*n*+1)*(*C_{nm}*,*S_{nm}*)
- Gravity Anomaly: $(n-1)^*(C_{nm}, S_{nm})$
- Surface Mass Change: $(2n+1)^*(\Delta C_{nm}, \Delta S_{nm})$

<u>Conclusions</u>

for the [external gravity => mass density] inversion:

- The 3-D inversion is non-unique (well-known).
- This 3-D non-uniqueness is associated with the radial (depth) dimension.
- Comparing the (spherical harmonic) multipole expansion and the moment expansion => The degree of deficiency in inversion is n(n-1)/2 for each degree n.
- The 2-D inversion on a spherical shell is unique.
- In terms of spherical harmonics this 2-D uniqueness is convenient and useful in (global) time-variable gravity studies (such as GRACE).