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Outline 
•  Linear expansion 

–  Vector space 
–  Fourier analysis 
–  Spherical harmonics 
–  EOF/PCA 

•  Normal modes  
–  of musical instruments 
–  of Earth 

•  Inverse problems 
•  Earth’s rotation 

–  “Astronomical” 
–  “Geophysical” 

•  Gravity and Geomagnetism 



Vector space 
•  Dimensionality 
•  Addition 
•  Null vector  
•  Scaling / multiplication 
•  Unit vector 
•  Inner product 
•  norm 
•  Basis 
•  Projection / component 



Tensor of degree n 

•  Scalar (n = 0) 
•  Vector (n = 1) 
•  Tensor of n = 2; (matrix) 

– stress 
– strain 

•  Tensor of n = 4: 
– elasticity / compliance 



Hilbert space 

•  “Function space” 
•  Infinite dimension 
•  domain 
•  Inner product 
•  Orthogonality 
•  Basis function 
•  Completeness 



Fourier analysis 

•  Basis function = sinusoids 
•  Cartesian coordinates of dimension n 
•  Orthogonal 
•  Complete 





Spherical Harmonics 

•  Spherical coordinates 
•  Satisfying Laplace equation 
•  Solid harmonics (3-D) 
•  Surface harmonics (2-D) 
•  Legendre functions 
•  Orthogonal 
•  Complete 





Top view 

Side view 



EOF (Empirical Orthogonal Function)  
-  decomposing data matrix into “mode of standing-oscillations” 
-  presented by spatial pattern and temporal series. 

Data matrix D(x,t): 

EOF = the eigen-solutions of the covariance matrix of D : R  = DTD 

Spatial pattern Si(x) = eigenvectors (orthogonal) 

Time series Ti(t) = projection of F onto the i-th eigenvector (orthogonal) 

% variance = eigen-value 

time series for station xi,i = 1,2,…p 

observations from all the 
used stations at time j. 

j = 1,2,…n 

Decomposed: D(x, t) = Σi Si(x) Ti(t),  



Normal modes 

•  Musical instrument 
– Wave equation 
– Boundary condition 
– Propagating wave / normal mode duality 
– 1-D: string 
– 2-D: drum 
– 3-D:  

•  Earth 



What is music? 
Satisfying the wave equation (n-D) under boundary conditions: 

Oscillation of the bell (r,t) 

= Σ (of all normal modes, )  
 amplitude (depending on where, how hard you strike, etc., called 
“excitation”.) 

  * normal-mode eigenfunction (r) (depending on the physical 
property of the bell, e.g, if symmetric, sinusoids in 1-D, Legendre 
or Bessel functions in 2-D, etc. Earth is 3-D = 2-D + 1-D.) 
 *exp(iωt) (ω is the normal-mode eigenfrequency, or “natural” 
resonance frequency = music tones, with imaginary part = natural 
decay. Quantized because of boundary conditions.) 





A typical seismogram 



Travelling waves versus standing waves	






Spheroidal, Radial, and Toroidal	


Different classes of free oscillations	




Fault 

displacement static shift 

Static displacement produced by a “fault” in an elastic body 



Earthquake Displacement Field 
•  Equation of motion 

•  Solve by expanding displacement field 

 Normal mode eigenfunctions 

 Expansion coefficients (note the static limit)  

           



Co-Seismic Displacement Field 

u(r) = oscillations + static displacement  

= 0 (as t  ∞) + Σk=0
∞ ωk

-2 uk(r) M : Ek*(rf)
      (Gilbert, 1970 ) 

_____________________ 

Eigen-mode (uk(r) , Ek(rf) , ωk , k = spheroidal and toroidal: 

from SNREI model (e.g., 1066A, B; PREM) 

Moment tensor M: from Global CMT catalog 



The Scripps gang 
Inverse theory / Normal mode 

George Backus Freeman Gilbert Bobert Parker Guy Masters 



Sir Harald Jeffreys 
 (1891-1989) 

Gordon MacDonald 
(1929-2002) 

Kurt Lambeck 

Walter Munk 

Earth Rotation 

Tony Dahlen 
(1942-2007) 

John Wahr 



“The Earth precesses/nutates 
like a top.” 

“The Earth librates 
like a physical pendulum.” 

“The Earth wobbles 
like a frisbee.” 



(Polaris) ~26 Kyrs) 

“The Earth precesses/nutates like a top.” 



子曰：為政以德﹐譬如北辰﹐居其所﹐而眾星拱之。
《論語‧為政》



“The Earth wobbles like a frisbee.” 
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Tidal Braking: Slowing down Earth’s rotation and pushing away the Moon 







Co-Seismic Effects on Earth’s Rotation 

•  Milne (1906); Cecchini (1928) 
•  Munk & MacDonald (1960) 
•  Alaska earthquake (1964), Press (1965) 
•  Mansinha & Smylie (1967; +) 
•  Ben-Menahem & Israel (1970; +) 
•  Rice & Chinnery (1972) 
•  Dahlen (1973) 
•  Dziewonski & O’Connell (1975) 
•  Smith (1977) 
•  Souriau & Cazenave (1985) 
•  Gross (1986) 
•  Chao & Gross (1987; +) 

–  using normal mode summation (Gilbert, 1970) 
–  In terms of seismic moment tensor (Harvard CMT catalog) 
–  need (SNREI) Earth model (PREM) and normal mode 

eigen-functions (Masters) 
–  similar formulas for changes in gravity field, energy, etc. 



Seismic Moment Tensor 

•  Contains all information about source mechanism 
(magnitude, fault direction, slip angles, etc.) 

•  2nd-order tensor (conservation of linear 
momentum) 

•  Symmetric tensor, only 6 independent parameters 
(conservation of angular momentum) 

•  Magnitude (seismic moment) [M:M]½  is a good 
measure of earthquake size

     => moment scale (vs. 
Richter scale) 



Sumatra, 2004 
~ 3 microseconds. 
hardly measurable 

Cumulative change in Length-of-Day by earthquakes since 1976 



Sumatra, 2004 
~ 2.5 cm. 

Measurable, 
 but “buried” 

Cumulative “Mean” Pole Position shift by earthquakes, 1976-1999 



Polar Motion (Wobble) 

mean pole “before”  

mean pole “after”  

Earthquake 
(step function excitation) 

x 

y 



發生時間 地點 地震規模 日長改變量 自轉軸偏移量 自轉軸偏移方向 
1957/3/9 阿拉斯加 9.1 (資料不足) (資料不足) (資料不足) 
1960/5/22 智利 9.5 –8.4 µs  68 cm 115 °E 
1964/3/27 阿拉斯加 9.2 + 6.8 µs 23 cm 198 °E 
2004/12/26 蘇門答臘 9.3 –6.8 µs 7 cm 127 °E 
2010/2/27 智利 8.8 –1.3 µs 8 cm 112 °E 
2011/3/11 日本 9.1 –1.6 µs 15 cm 139 °E 





Long-term changes in Earth’s oblateness J2 



Limitation of (time-variable) gravity signal 

“You don’t know where it comes from!” 

•  Low spatial resolution 

•  Non-uniqueness in inversion 

•  Sum of all sources 



a 

V0, ρ(r) 

S0, σ(Ω) U(r) 



•  Newton’s gravitational law 

•  Addition theorem  

Multipole expansion of gravity field 

Gravitational Potential Field 



•  Multipole expansion of Newton’s formula: 

•  Conventional expression (satisfying Laplace Eq. 
 in terms of Stokes Coeff.): 

Gravitational Potential Field (Geoid) 



3-D Gravitational Inversion 
•  Multipole expansion 

2n +1 (known) multipoles for each degree n 

•  Moment expansion 

(n+1)(n+2)/2 (unknown) moments for each n 

“Degree of deficiency” of knowledge is 
n(n-1)/2 for each degree n. 



Degree n 
# multipoles 

(2n + 1) 
# moments  

(n+1)(n+2)/2 
Degree of 
deficiency 
n(n-1)/2 

0 1 (monopole) 1 (total mass) 0 

1 3 (dipole) 3 (center of mass) 0 

2 5 (quadrupole) 6 (inertia tensor) 1 

3 7 (octupole) 10 (3rd moment) 3 

4 9 15 6 

5 11 21 10 

6 13 28 15 

100 201 5151 4950 

The degree of deficiency as a function of spherical 
harmonic degree n in the 3-D gravitational inversion.  



Additional physical/mathematical 
constraints leading to unique solutions: 

•  minimum shear energy  

•  maximum entropy of ρ 

•  minimum norm-2 variance for the lateral 
distribution  

•  ……….. 



2-D gravitational Inversion 
on a spherical shell S0 

It is possible to mimic ANY external field by 
means of some proper surface density on S0. 



For CHANGES due to mass redistribution on 
S0 (taking into account of loading effect), in 
Eulerian description: 

Unique! 

2-D gravitational Inversion 
on a spherical shell S0 (cont’d)  

Loading effect “undone” 



B.F.Chao!



(near) Surface Mass Transports 

•  Earth ellipticity ~ ½ of 1/300 a ~ 10 km 

•  Atmosphere scale height ~ 10 km 

•  Ocean < ~ 5 km 

•  Land hydrology < a few km 

•  Crustal/topography change < ~ 30 km 



Nice things about spherical harmonics: 

•  Wavelength, or spatial resolution, 

 ~ 40,000/2N km       Concept of spectrum 

•  Altitude attenuation ~ r—n+1 

•  Geoid:  Stokes Coeff. (Cnm,Snm) 

•  Gravity Disturbance: (n+1)*(Cnm,Snm) 

•  Gravity Anomaly:  (n-1)*(Cnm,Snm) 

•  Surface Mass Change: (2n+1)*(ΔCnm, ΔSnm) 



Conclusions 
for the [external gravity => mass density] inversion:  
•  The 3-D inversion is non-unique (well-known). 
•  This 3-D non-uniqueness is associated with the 

radial (depth) dimension. 
•  Comparing the (spherical harmonic) multipole 

expansion and the moment expansion => The 
degree of deficiency in inversion is n(n-1)/2 for 
each degree n. 

•  The 2-D inversion on a spherical shell is unique. 
•  In terms of spherical harmonics this 2-D 

uniqueness is convenient and useful in (global) 
time-variable gravity studies (such as GRACE). 


